
forest-ext
Clea F. Rees∗

2026/01/17

Abstract

forest-ext consists of various libraries for Sašo Živanović’s package forest (2017). The aim of the libraries is to

provide bug fixes or extensions currently unavailable in forest itself. I hope that this package — or at least

many of its constituents — will eventually be rendered unnecessary by an updated forest and disappear.

Contents

1 Basic usage 2

2 Tagging 2
2.0.1 Customisation . 4
2.0.2 Custom plugs . 5
2.0.3 Complete control . 6

2.1 Workflow . 7
2.2 Example . 9

3 Multiple parents 11
3.1 Creating multiple parents . 11
3.2 Connecting multiple parents . 14

4 Linguistics extensions 16

5 Utilities 17
5.1 Alignment . 17
5.2 Outer labels . 18
5.3 ‘Tagging’ keylists . 19

∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/prooftrees

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-ext 2 / 22

1 Basic usage

This package currently provides the following libraries:
Experimental elementary support for trees involving multi-dominance, based on ext.multi. Seeext.ling (lib.)

section 4.
Experimental elementary support for nodes with multiple parents. See section 3.ext.multi (lib.)

Experimental automatic tagging of forest trees. See section 2.ext.tagging (lib.)

Although this relies only on documented public interfaces provided by forest — no forest internals
are patched or redefined — the library does change the same pgf internals as the tagging support
in latex-lab-tikz-testphase (LATEX Project 2025).
Bits ’n bobs. See section 5.ext.utils (lib.)

For debugging, the following alternative libraries are provided:
ext.ling plus debugging. See section 4.ext.ling-debug (lib.)

ext.multi plus debugging. See section 3.ext.multi-debug (lib.)

ext.tagging plus debugging. See section 2.ext.tagging-debug (lib.)

ext.utils plus debugging. See section 5.ext.utils-debug (lib.)

Load the libraries in the same way as standard libraries:

\usepackage[<comma-separated-list of libraries>]{forest}

or

\usepackage{forest}
\useforestlibrary{<comma-separated-list of libraries>}

For example, the following line would load forest-lib-ext.multi and apply any defaults globally.

\usepackage[ext.multi]{forest}

The following lines would load the same library, but without applying any defaults.

\usepackage{forest}
\useforestlibrary{ext.multi}

Any default settings can then be applied locally using \forestapplylibrarydefaults{⟨list of

libraries⟩}, if desired.

2 Tagging1

Note that this library requires ext.utils, described in section 5.
Experimental semi-automatic tagging of forest trees.ext.tagging (lib.)

ext.tagging plus debugging.ext.tagging-debug (lib.)

forest-lib-ext.tagging (and forest-lib-ext.tagging-debug) are based on the ‘first-aid’ in latex-lab-tikz-
testphase by Ulrike Fischer (LATEX Project 2025). Those patches do not work with forest because

1For an introduction to support for tagged PDF in LATEX 2ε, see Fischer (2025). For gorier details see, for

example, International Organization for Standardization (2025) and pdf Association (2024a,b) and related

publications.

forest-ext 3 / 22

a forest tree includes many tikzpicture environments, some of which may never be typeset
and all of which are used only indirectly via low-level TEX boxes. Moreover, the latex-lab code
depends on pgf’s ‘remember picture’ feature, which is not compatible with forest with or without
tagging.
In addition to making it possible to tag forest environments in tagged documents, the library
produces an alternative text describing the tree semi-automatically. This is important because
trees are unlike some other images, where relatively short summaries provide a reasonable
alternative to the picture. To provide high quality access to the information contained in a typical
tree, it is necessary to describe it in detail. Both the content of the nodes and their structural
relationships must be described, together with any labels and annotations.
The current implementation does not do all of the work: it does not include information from
regular labels or the content of annotations added using regular TikZ or pgf techniques. However,
it does describe the main tree’s structure, together with the content of its nodes and edge
labels, though you may need to override the generated content for content which includes special
characters, in a quite broad sense of ‘special’.
The support for tagging adds the following forest stages which are executed in order, sandwiched
between compute xy stage and before drawing tree.
If you redefine (or load code which redefines) the default implementation of stages,
you must include or replace the additions from this library. For an example of how
to do this, see prooftrees (Rees 2026), which includes, redefines, supplements or replaces these
additions.
Empty by default. Analogous to before typesetting nodes, before packing etc.before tagging nodes

(keylist) Executes code to assign tagging code to each node in the tree.tag nodes (tag. keylist)

Note this is a tagging keylist. See section 5.3.
Empty by default. Analogous to before typesetting nodes, before packing etc.before collating tags

(keylist) Walks the tree to collate the tags into a single alternative text for the tree.collate tags (tag. keylist)

Note this is a tagging keylist. See section 5.3.
Empty by default. Analogous to before typesetting nodes, before packing etc.before tagging tree (keylist)

Calculates an approximate bounding box for the tree and inserts the collated tagging data intotag tree stage (stage)

the document’s tagging structure using tagpdf.
The code inserts a tagged structure analogous to (and heavily derived from) the alt plug provided
by latex-lab-tikz-testphase. However, unlike the latex-lab plug, the library generates the alt text
automatically by default. The result can be configured using a small number of keys. The keys’
scope is the entire tree, except that the scope of alt text is the current node.
= ⟨tokens⟩alt text (auto. toks)

Override the automatic generation of alternative text for the current node.
Internally, the code uses the further key node@ttoks. In essence, if alt text is empty,
node@ttoks is constructed from the node’s content, edge label and any applicable struc-
tural descriptors, as specified by is root, is branch and so on. If alt text is not empty, it is
used as-is. The reason for this indirect assignment — first constructing node@ttoks and only
then assigning it to alt text — is that the value of node@ttoks is constructed incrementally
(i.e. partially by delayed keys) and keeping alt text as-is makes it easy to test during every
cycle.
node@ttoks is intended for purely internal use and should NOT be used outside the library code.
alt text is the public face of this key.
Note that tagging content is always attached to nodes2. Labels, edge labels and structures

2I’m not altogether happy with this implementation, so this may change, but I want to keep things relatively

simple for now.

forest-ext 4 / 22

are not (currently?) tagged independently. So, if you specify alt text, you replace not only
the content of the node in the corresponding tag, but the content of any edge label and any
relevant structural information. So if you want, say, a branch number prepended or an indication
that the node is a ‘child‘ or ‘leaf‘, say, or that the tree forks from this node, you must include
that information into the ⟨tokens⟩ when specifying alt text.
= ⟨tokens⟩is root (auto. toks reg.)

Specify text to insert when describing the root. Default is root.
= ⟨tokens⟩is child (auto. toks reg.)

Specify text to insert when describing a child. Default is child.
= ⟨tokens⟩is leaf (auto. toks reg.)

Specify text to insert when describing a leaf node. Default is end branch.
= ⟨tokens⟩is edge label (auto. toks reg.)

Specify text to insert when describing an edge label. Default is edge label.
= ⟨tokens⟩has branches (auto. toks reg.)

Specify text to insert when describing a parent’s branches. Default is branches. A number is
inserted before to indicate the number of branches.
= ⟨tokens⟩is branch (auto. toks reg.)

Specify text to insert when describing node’s (and, hence, this subtree’s) position in the tree.
Default is branch. A number is appended to indicate which branch.

2.0.1 Customisation

Most users will not need the options explained in this section.
tagging (bool. reg.)

tagging may be used to make code conditional on the activation status of tagging. For this
reason, it has a public name. However, it should NOT be changed.
More generally, you should not suspend, resume, enable or disable tagging inside a forest
environment unless you understand what you are doing with respect to both the tagging code and

forest3.
= none|alt texttag nodes uses (choice)

Configures the keylist tag nodes. alt text installs the default auto-generation code which
constructs a value if alt text is unspecified for a (non-phantom) node.
The order in which nodes are tagged may be set using tag nodes processing order. The
default is unique=tree.
= none|alt textcollate tags uses (choice)

Configures the keylist collate tags. alt text installs code to collate the values of the
autowrapped toks option alt text.
The order of collation may be set using collate tags processing order. The default is
unique=tree depth first.
= none|alt texttag tree uses (choice)

Configures the style tag tree. alt text installs the default keys used to calculate approximate
dimensions for the bounding box and to pass the collated tags to the plug responsible for tagging
the tree.
This style is used by the default implementation of tag tree stage:

3Possibly nobody currently meets both of these requirements.

forest-ext 5 / 22

tag tree stage/.style={for root'=tag tree},

2.0.2 Custom plugs

By default, everything is noop. If the user does nothing and tagging is active, the alt plug is used.
If this is not desired, it is sufficient to use , which will make everything (remain) noop or , which
will allow the latex-lab patches to mix explosively with your forest trees. This is not recommended
unless you plan to prevent such encounters yourself. In the worst cases, the combination will
result in fatal compilation errors. In the best cases, the document will compile, but tagging will
almost certainly be broken.
However, it is possible to strike a middle course and use the infrastructure provided by this library
as the basis for custom tagging. Some approaches were explained in section 2.0.1. If those are
not sufficient, you may define custom plugs. This section explains the minimal requirements for
such plugs to be used by this library i.e. without using custom tagging.

Requirements Let Percy be the name of your custom plug. Then ext.tagging requires:

1. a plug named Percy for socket tagsupport/forest/setup;

2. a plug named Percy for socket tagsupport/forest/tag.

If both conditions are satisfied, writing

\forestset{%
plug=Percy,

}

will not result in an immediate error.
In order to do something useful, of course, Percy must do rather more than this, so let’s see what
alt is used. tagsupport/forest/setup is used right at the start of the tree. This happens before
any parenthetical argument is processed, before any star is used, before the default preamble
and well before any tree-specific preamble4. In particular, the default values of tagging keylists

may still be manipulated at this point, since the socket is used before they are transformed into
regular keylist options. The alt plug exploits this using the following code:

\socket_new_plug:nnn {tagsupport/forest/setup}{alt}
{

\forestset{
plug=alt,
tag nodes uses=alt text,
collate tags uses=alt text,
tag tree uses=alt,

}
}

Note that it is good practice to set plug here, even if the code is already plug-specific, since
the value is used later when calling the tagsupport/forest/tag socket. The content of the alt
tagsupport/forest/tag plug is very similar to the latex-lab patch for .
So let’s assume that Percy should use the same code as the alt plug for the tagsupport/forest/tag
socket, but something different for tagsupport/forest/setup.

4It uses a generic hook to inject code before an internal macro. This ensures it works for both the environment

and command forms without adding an additional TEX group, but is clearly not ideal.

forest-ext 6 / 22

As noted above, tag nodes uses, collate tags uses and tag tree uses are choice keys.
Given the way pgfkeys implements such keys, Percy might do something like this:

\NewSocketPlug {tagsupport/forest/setup}{percy}
{%

\forestset{%
plug=percy,
tag nodes uses=percy,
collate tags uses=percy,
tag tree uses=alt,

}%
}
\forestset{%

declare autowrapped toks={percy text}{},
tag nodes uses/percy/.style={%

redeclare tagging keylist={tag nodes}{%
if percy text={}{%

percy text/.option=content,
+percy text={Percy: },

}{%
percy text+={: },
percy text+/.option=content,

},
},

},
collate tags uses/percy/.style={%

redeclare tagging keylist={collate tags}{%
collate tag/.option=percy text,

},
},

}
\NewSocketPlug {tagsupport/forest/tag}{percy}
{%

\AssignSocketPlug {tagsupport/forest/tag}{alt}%
\UseSocket {tagsupport/forest/tag}%

}

This would result in each node in the tree contributing both its content and a prefix specified
by option percy text to the alternative text provided in the tagging structure of the pdf.
No structural information is added here i.e. there are no descriptions of branching or of the
relationships between nodes5.

2.0.3 Complete control

= true|falsecustom tagging (code key)

not custom tagging (code key)

If true, do not tag following trees in the current TEX group.
This key must be used BEFORE \begin{forest} or \Forest.
If you do not want to use the library’s tagging code, you can easily avoid it by simply not using it.
However, you might want to use it for only some trees or you might wish to use the pre-defined
stages as a basis for a custom configuration. In such cases, custom tagging may be used to tell
the library that it should not tag trees in the local TEX group even if tagging is active. In this

5For a more realistic implementation, see ?? for the code used for the alt plug. For a more elaborate example

of customisation, see Rees (2026).

forest-ext 7 / 22

case, the user (or another package) is entirely responsible for tagging. The custom tagging code
may nonetheless test tagging and use the additional stages, if desired. For example, it could
redefine the stages which generate and concatenate the tags or it could install alternative plugs
into appropriate sockets.
Note that latex-lab’s code is still active in this scenario, so you are responsible for dealing with
the patches it applies for tikzpicture environments. Note also that custom tagging is not a
boolean register or option — it is simply designed to emulate one. It in fact uses the .code
handler to set an expl3 boolean variable.
The default alt plug is implemented in modular fashion, so it is possible, with care, to take a
pick-’n-mix approach.

2.1 Workflow

ext.tagging redefines forest’s stages. If you just wish to use the library to tag ordinary trees,
you can ignore the details of this definition. However, should you wish to use the library with a
custom definition of stages, the details below should enable you to do so. As with forest’s own
definitions, the various steps may be redefined, replaced, removed or extended as required. The
library also follows the forest package’s convention in providing before keylists reserved for user
use i.e. all such keylists are empty by default.
Tagging is initialised and finalised by code added to the hooks env/forest/begin and
env/forest/end.

stages/.style={
for root'={

process keylist register=default preamble,
process keylist register=preamble

},
process keylist=given options,
process keylist=before typesetting nodes,
typeset nodes stage,
process keylist=before packing,
pack stage,
process keylist=before computing xy,
compute xy stage,
process keylist=before tagging nodes,
process keylist=tag nodes,
process keylist=before collating tags,
process keylist=collate tags,
process keylist=before tagging tree,
tag tree stage,
process keylist=before drawing tree,
draw tree stage

},

This describes the default implementation with setup plug=alt and tag plug=alt6.

1. default preamble (see Živanović 2017)

2. preamble (see Živanović 2017)
6Strictly speaking, the non-trivial claims in items 10 to 15 are almost entirely false as stated. For example,

tag nodes could construct an entirely new branch and put all the tagging information there, collate tags could

then collect that information and write it to an external file and tag tree stage could embed or attach that

file. But that is not very useful to know. The proof of this is simple: if such radical divergence features in your

tagging plans, you do not need this package, while, if you do, it shouldn’t. qed. It follows that you should skip

this footnote.

forest-ext 8 / 22

3. given options (see Živanović 2017)

4. before typesetting nodes (see Živanović 2017)

5. typeset nodes stage (see Živanović 2017)

6. before packing (see Živanović 2017)

7. pack stage (see Živanović 2017)

8. before computing xy (see Živanović 2017)

9. compute xy stage (see Živanović 2017)

10. before tagging nodes Empty by default. Use in the same way as forest’s before keylists.

11. tag nodes A tagging keylist which should, when processed, ensure that each node which
requires tagging is correctly tagged in whichever way the installed tag plug and associated
code requires e.g. for the default alt configuration, alt text.

12. before collating tags Empty by default. Use in the same way as forest’s before keylists.

13. collate tags A tagging keylist which should, when processed, result in the collation of all
tags for the tree in the form expected by tag tree stage.

14. before tagging tree Empty by default. Use in the same way as forest’s before keylists.

15. tag tree stage Executes code to actually tag the tree using the data finalised in collate
tags (possibly modified by before tagging tree).

16. before drawing tree (see Živanović 2017)

17. draw tree stage (see Živanović 2017)

forest-ext 9 / 22

2.2 Example

Here is a complete example7:

\DocumentMetadata{
tagging=on,
lang=en-GB,
pdfversion=2.0,
pdfstandard=ua-2,

}
\tagpdfsetup{

math/mathml/structelem,
}
\documentclass{article}
\usepackage[ext.tagging]{forest}
\ifcsname directlua\endcsname

\usepackage{unicode-math}
\else

\usepackage[T1]{fontenc}
\fi
\title{This Test Needs No Title}
\begin{document}

ABC apple banana pear
\begin{forest}

% This example is from Jasper Habicht.
[VP

[DP[John]]
[V’, alt text=V prime,

[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]

]
]

\end{forest}
ABC apple banana pear

}
\end{document}

Note the use of alt text to avoid problems due to the use of ' with pdfTEX. If the (LATEX Project
recommended) engine LuaLATEX is used, you need not be quite so careful, but you should always check the
content of the alt text for unpleasant surprises.
If compiled with pdfLATEX, the above example yields the following structure:

<PDF>
<StructTreeRoot>
<Document xmlns="http://iso.org/pdf2/ssn"

id="ID.02"
>

<text-unit xmlns="https://www.latex-project.org/ns/dflt"
id="ID.05"

7Note that the recommended syntax for invoking and using tagging support in LATEX 2ε changes very frequently. In particular,

the recommended options for \DocumentMetadata and \tagpdfsetup, including whether to use the latter at all, are not at all stable.

You should therefore check and use the recommended options at the time your document is written — there is nothing in the code

before \documentclass which is in any way particular to using the libraries provided by this package. That is, deviations from

documented best practice in the use of \DocumentMetadata and \tagpdfsetup are either due to mistakes on my part or the result

of updates following the publication of this document. In either case, you should avoid replicating the deviations in your own code.

forest-ext 10 / 22

rolemaps-to="Part"
>

<text xmlns="https://www.latex-project.org/ns/dflt"
id="ID.06"
xmlns:Layout="http://iso.org/pdf/ssn/Layout"
Layout:TextAlign="Justify"
rolemaps-to="P"

>
<?MarkedContent page="1" ?>ABC apple banana pear
<Figure xmlns="http://iso.org/pdf2/ssn"

id="ID.07"
alt="root VP 2 branches branch 1 DP child John end branch V prime V child

sent end branch DP child Mary end branch DP 2 branches branch 1 D child
a end branch branch 2 NP child letter end branch "

↪→

↪→

xmlns:Layout="http://iso.org/pdf/ssn/Layout"
Layout:BBox="{ 259.4641, 542.90266, 407.35223, 667.19801 }"

>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>
<?MarkedContent page="1" ?>

</Figure>
<?MarkedContent page="1" ?> ABC apple banana pear

</text>
</text-unit>

</Document>
</StructTreeRoot>

</PDF>

A similar result is obtained with LuaLATEX, but the output is a bit longer as it includes many empty
MarkedContents.

forest-ext 11 / 22

3 Multiple parents

This library provides some basic facilities for formatting trees which are not technically trees in
forest’s sense. In the (one) strict sense of ‘tree’, every node but one has exactly one parent, while
the one has none.
However, in a different/looser sense of ‘tree’, every node but one has at least one parent, while
the one has none. This library makes it a bit easier to draw such trees with forest.
The library began in response to a query from Alan Munn on TEX se and initially focused
entirely on multi-dominance structures in linguistics. Support for those structures is available in
the ext.ling library, which now uses the more general ext.multi.
The styles in section 3.1 support drawing connections from a child to additional parents not
currently in the tree, while those in section 3.2 support adding connections to additional extant
parents.
Note that

• styles are always specified for the child node;

• the child must have exactly one ‘natural’ parent i.e. it must be part of the existing tree
structure when the style is used.

Load ext.multi or ext.multi-debug as described in section 1.

3.1 Creating multiple parents

Note:

• the child should be created as the child of its ultimate grandparent;

• the child’s parents will all be children of the child’s grandparent.

For example, consider the tree,

Grandparent

Parent 1 Parent 2

Child

Parent 3

This structure can be conveniently created using multi, but to translate it into the bracket
notation forest uses, all of Child’s parents should first be omitted and Child should instead be
specified as the child of Grandparent.

\begin{forest}
[Grandparent [Child]]

\end{forest}

Parents 1, 2 and 3 should be specified as an option to Child:

\begin{forest}
[Grandparent [Child, multi={Parent 1,Parent 2,Parent 3}]]

\end{forest}

forest-ext 12 / 22

= {⟨content of parent 1, . . . , content of parent n⟩} where n ∈ N, n > 1multi (style)

For every i ∈ N such that 0 < i ≤ n, create a new child of the current node’s parent with content
⟨content of parent i⟩. Then detach the current node from its parent and attach it as the child of
its n parents.

\begin{forest}
[A

[D,
multi={B,D}

]
]

\end{forest}

A

B

D

D

If parent anchor and/or child anchor are set, edges are drawn to/from these points as one
would expect.

\begin{forest}
[A

[D, multi={B,C},]
[E, parent anchor=children,

[J, multi={F,G,H,I},]
]
[K

[N, multi={L,M}, child
anchor=parent,]↪→

]
]

\end{forest}

A

B

D

C E

F G

J

H I

K

L

N

M

If the edges library is loaded, the multi library loads the TikZ library, ext.paths.ortho and tries to
emulate forked edge appropriately8.

\begin{forest}
forked edges,
[A

[D, multi={B,C}]
[E

[I, multi={F,G,H}]
]
[J

[N, multi={K,L,M}]
]

]
\end{forest}

A

B

D

C E

F G

I

H

J

K L

N

M

If we apply forked edges to only part of a tree, we can produce the rather ugly, but hopefully
informative, structure below.

8The alignment seems to me to be close, but not always quite perfect, though I do not know why at the moment.

forest-ext 13 / 22

Box 3.5

\begin{forest}
[R [Child, multi={P1,P2,P3},every parent=blue,]

[Aunt [Cousin 1][Cousin 2]]]↪→

\end{forest}

R

P1 P2

Child

P3 Aunt

Cousin 1 Cousin 2

\begin{forest}
for tree={%

child anchor=parent,
parent anchor=children,
fork sep'=1em,

},
[O

[P
[S, multi={Q,R}]

]
[T, forked edges=descendants,

[Z,multi={U,V,W,X,Y}]
]

]
\end{forest}

O

P

Q

S

R

T

U V W

Z

X Y

Note that the change to fork sep for the tree in forest’s preamble affects the edges drawn from
and to the nodes inserted by multi. This is because the library forwards values given to fork
sep and applications of forked edge so that forest keys work in (hopefully) reasonably intuitive
ways.
Should you not want such keys forwarded, either load the library without defaults (see section 1)
or override the behaviour for the current TEX group with, say,

\forestset{%
unautoforward=fork sep,
null/.style={},
forked edge'/.forward to=/forest/null,

}

The phantom style is needed because, unlike forest’s provision for its own forwarding facilities,
pgfkeys provides no easy way to undo the effects of the .forward to handler.
Since the library is currently experimental and implementation is complicated if one wants to
avoid avoid using forest internals, configuration options are currently limited.
= {⟨key-value list⟩}every parent (keylist)

Apply ⟨key-value list⟩ to all the current node’s parents. If multi is used, these are the parents
created as a result; otherwise, it is the current node’s singular parent or none, if the node has no
parent.
Initial value: empty.
Box 3.5 illustrates usage with a simple example.

forest-ext 14 / 22

3.2 Connecting multiple parents

Sometimes one wants instead to give the current node an additional parent without removing the
existing one and one does not wish to add the additional parent, but rather to specify some other
extant node in the tree.
This kind of structure cannot be so easily automated, especially if one wants to avoid edges
crossing each other or nodes. However, it is possible to provide some convenient styles to assist in
manually specifying such structures.
= {⟨dynamic tree operation⟩}{⟨⟨extant node⟩:⟨keylist⟩⟩}also parent (style)

= {⟨dynamic tree operation⟩}{⟨extant node⟩}
= {⟨⟨extant node⟩:⟨keylist⟩⟩}+also parent (style)

= {⟨extant node⟩}
= {⟨⟨extant node⟩:⟨keylist⟩⟩}also parent+ (style)

= {⟨extant node⟩}
Adds ⟨extant node⟩ as an additional parent of the current node. ⟨keylist⟩ specifies a list of
key-values for the connecting node (see below).
The current node becomes ⟨extant node⟩’s fosterling, while ⟨extant node⟩ becomes the current
node’s foster parent.
The styles work by creating a new child of ⟨extant node⟩. This node affects the structure of the tree
and can be configured in the usual way, but it is not visible. One might say it is ‘semi-phantom’:
it is not quite phantom because, for instance, it has visible edges which serve to connect the
current node with the additional parent.
For an illustration, see the (rather odd-looking) family tree in box 3.69.
+also parent prepends the new child to ⟨extant node⟩; also parent+ appends it. These are just
shorthand wrappers around also parent using the prepend and append dynamic tree operations.
Note that ⟨dynamic tree operation⟩ should create a new node, though this is not enforced.
Visit the current node’s fosterlings.fosterlings (step)

Visit the current node’s foster parents.foster parents (step)

= {⟨nodewalk⟩}every fosterling (step)

Visit every fosterling in ⟨nodewalk⟩.
= {⟨nodewalk⟩}every foster parent (step)

Visit every foster parent in ⟨nodewalk⟩.
Visit the fosterling which the current node connects to a foster parent.c fosterling (step)

Visit the foster parent which the current node connects to a fosterling.c foster parent (step)

This last pair of steps are only really useful if you want to change edge path, since they are only
accessible from a constructed, typically invisible node.
= true|falsedebug multi phantoms (bool.

reg.)

not debug multi phantoms
(bool. reg.) Render the normally invisible nodes created by also parent etc. visible for debugging purposes.

If the nodes have no content, their borders are drawn in red; otherwise, their contents are rendered
in red. Visible rendering does not change the remainder of the tree e.g. it does not alter the
spacing of nodes or the paths of edges. However, if the nodes occur near the tree’s boundaries,
the bounding box may expand to accommodate them10.

9The names are from the children’s novels by Cynthia Voigt.
10It should not be hard to prevent this, but does not seem worth the trouble.

forest-ext 15 / 22

Box 3.6

Cilla

Eunice

Abigail Tillerman

John Liza

Dicey James Maybeth Sammy

Francis Verricker Samuel

John

\begin{forest}
forked edges,
delay={%

for tree={%
+content=\strut,

},
},
[,coordinate,calign primary child=1,calign secondary child=2,calign=midpoint,

[Cilla
[Eunice]

]
[Abigail Tillerman

[John,also parent={append}{j}]
[Liza, also parent={append}{!r3}, for children={also parent={append}{!un}}

[Dicey]
[James]
[Maybeth]
[Sammy]

]
[Francis Verricker,no edge]
[Samuel, also parent+={!r3}]

]
[John, name=j, no edge
]

]
\end{forest}

forest-ext 16 / 22

Box 3.7

Cilla

Eunice

Abigail Tillerman

John Liza

Dicey James Maybeth Sammy

Francis Verricker Samuel

John

{%
\forestset{debug multi phantoms}%
\begin{forest}

forked edges,
delay={%

for tree={%
+content=\strut,

},
},
[,coordinate,calign primary child=1,calign secondary child=2,calign=midpoint,

[Cilla
[Eunice]

]
[Abigail Tillerman

[John,also parent={append}{j}]
[Liza, also parent={append}{!r3}, for children={also parent={append}{!un}}

[Dicey]
[James]
[Maybeth]
[Sammy]

]
[Francis Verricker,no edge]
[Samuel, also parent+={!r3}]

]
[John, name=j, no edge
]

]
\end{forest}%

}

Requires ext.multi-debug. If the debugging code is not loaded, use of these keys will do nothing
but write a warning to the console and log.
For an example, see box 3.7. Note that the content of the forest environment is identical to
that in box 3.6. The red squares are the effect of toggling debug multi phantoms beforehand.

4 Linguistics extensions

This library provides some elementary styles for formatting trees involving multi-dominance,
together with a style for dealing with empty nodes resistant to the linguistics library’s nice empty
nodes. These former were developed in response to a query from Alan Munn on TEX se.
See also section 3, especially for straight connections to multiple parents and dynamic creation of
multiple parents as children of a single grandparent.
= {⟨keylist⟩}pretty nice empty nodes

(style)

forest-ext 17 / 22

Make empty nodes prettier in cases where nice empty nodes cannot be used. ⟨keylist⟩ permits
supplementing or overriding what is done for empty nodes.
Note that nice empty nodes is preferable, so should be used where possible. For details, see the
documentation of nice empty nodes in Živanović (2017).
For example11,

\begin{forest}
for tree={

calign angle=60,
align middle child,

},
pretty nice empty nodes={

for current and
siblings={anchor=parent},↪→

parent anchor=children,
calign with current edge,

},
[a

[b]
[

[
[d]
[e

[f]
[g]
[h]

]
]
[c]

]
]

\end{forest}

a

b

d e

f g h

c

5 Utilities

This library provides tagging keylists, together with a few styles which do not really fit anywhere
else.

5.1 Alignment

= ⟨option⟩align middle child (style)

If the current node has an odd number of children, sets calign child to the middle child and
sets calign= ⟨option⟩. ⟨option⟩ should, therefore, be a valid value for calign.
If ⟨option⟩ is omitted, a default of child edge is applied.
See box 4.1 for an example.
= ⟨option⟩align middle children (style)

Sets align middle child= ⟨option⟩ for the tree.
11Based on TEX se answer: 717677. Based on TEX se question 717592 by argo.

https://tex.stackexchange.com/a/717677
https://tex.stackexchange.com/q/717592

forest-ext 18 / 22

Box 5.1

1
21

1
22

1
23

1
23

1
22

1
23

1
23

1
21

1
22

1
23

1
23

1
22

1
23

1
23

n = 1

n = 2

n = 3

\begin{forest}
for tree={

parent anchor=children,
child anchor=parent,

},
delay={

for descendants={
content/.process={Ow{level}{$\frac{1}{2^{#1}}$}},

},
for nodewalk={

fake=root,
while nodewalk valid={1}{1}%

}{
outer label/.process={Ow{level}{{$n=#1$}:{anchor=west}}}%

},
},
[[[[][]] [[][]]] [[[][]] [[][]]]]

\end{forest}

5.2 Outer labels

Outer labels are nodes added after the tree is drawn, aligned with a boundary of the bounding
box of the completed tree and nodes within the tree. The idea is to enable the addition of labels
such as those shown in box 5.1.
= ⟨anchor⟩outer labels at (toks reg.)

Additional alignment point for any outer labels. ⟨anchor⟩ should be a valid anchor for the ‘current
bounding box‘ when the tree has been drawn, but additional code is not yet executed.
The default is east, which is probably what is wanted for most trees using the forest default
value of grow etc.
Note that this is a register. You cannot use different values for different parts of a tree.
= {⟨keylist⟩}outer labels (keylist reg.)

pgf/TikZ key-values applied to all nodes where outer label is set. Options passed to outer
label are applied later, so may override defaults for the tree.
The default is anchor=base west.
Note that this is a register. You cannot use different values for different parts of a tree.
= {⟨content⟩}outer label (style)

= {⟨content⟩}:{⟨options⟩}
Create a label aligned with the current node and the additional alignment point specified by
outer labels at with content ⟨content⟩. If ⟨options⟩ are given, they are passed to the code
responsible for creating the node.

forest-ext 19 / 22

5.3 ‘Tagging’ keylists

A ‘tagging keylist’ is very similar to a forest keylist option, but its default value can be changed
and/or it can be redeclared12. For motivation, see section 2.
More specifically, inside a forest environment, it behaves exactly like a regular forest keylist
option13. However, outside a forest environment, its default value can be modified and/or
replaced. Where this is not a requirement, you should use a regular keylist option since tagging

keylists are subject to additional limitations and the implementation is significantly less efficient.
Important:

1. These keys are not really tagging-specific and do not require tagging to be active, despite
the names, so may be useful in other contexts.

2. These keys are only available outside forest environments.

3. Tagging keylists cannot be declared as registers14. Each tagging keylist corresponds to a
keylist option. The option is automatically declared just before every forest environment
in the current TEX group.

4. An additional TEX group is added to all forest environments. This ensures that the option
declaration is properly localised, which in turn allows any tagging keylists’ default values to
be further manipulated after the current forest is finished.

5. Outside forest environments, unlike forest keylists, tagging keylists are not ordered and do
not store more than one instance of any key. The underlying implementation uses l3prop
property lists.
Inside forest environments, tagging keylists are ordered and behave as regular forest keylist
options. l3prop property lists are not used inside forest environments.

6. Outside the forest environment, they may be manipulated only using the keys defined by

this library.

7. Inside the forest environment, they may be manipulated only using regular forest methods.

Note that to actually influence a tree, any tagging keylist must be processed during the construction
of that tree. Simply declaring a tagging keylist with some set of options will not, in itself, affect
the typeset result in anyway. This is equally true of regular forest keylists. Please see Živanović
(2017) for details.
= {⟨keylist⟩}{⟨key-value list⟩}declare tagging

keylist,redeclare tagging
keylist (code key)

Declares or redeclares a forest keylist option.
Available only outside forest environments.
Since keylists cannot actually be redeclared, what really happens is this:

• An internal property list is defined to hold ⟨default⟩. This may then be manipulated using
the various keys explained below.

• At the start of each forest environment (within the current TEX group), a keylist option is
declared. The default value passed to declare keylist is not necessarily ⟨key-value list⟩.
It is, rather, a key-value list derived from the contents of the underlying property list at the
time. Hence, the default may be further manipulated after the keylist option is declared.

12As far as I can tell, this is not possible for regular forest keylist options. Once declared, their default values

are fixed.
13This is because it is a regular keylist option at this point.
14This is not a limitation since changing the default value of a keylist register is trivial.

forest-ext 20 / 22

Note that if you do not want the default be be manipulable after the keylist is declared, you
should use the forest key declare keylist= {⟨keylist⟩}{⟨key-value list⟩} instead, as this will be
far more efficient.
= {⟨keylist⟩}{⟨key-value list⟩}tagging keylist put (code

key) Adds the contents of ⟨key-value list⟩ to a ⟨keylist⟩ declared with declare tagging keylist.
Note that if ⟨key-value list⟩ includes an occurrence of a key already in the list, the key will be
replaced, even if the value differs.
= {⟨keylist⟩}{⟨key⟩}tagging keylist remove key

(code key) Removes ⟨key⟩ from ⟨keylist⟩, where ⟨keylist⟩ was previously declared with declare tagging
keylist.
Available only outside forest environments.
Note this removes the ⟨key⟩ regardless of its current value (if any).
= {⟨keylist⟩}{⟨key-value list⟩}tagging keylist remove (code

key) For each ⟨key⟩ or ⟨key⟩= ⟨value⟩ pair in ⟨key-value list⟩, removes ⟨key⟩ from ⟨keylist⟩ iff it has the
specified ⟨value⟩ (if given) or no value (otherwise), where ⟨keylist⟩ was previously declared with
declare tagging keylist.
Available only outside forest environments.
Note that a valueless key is distinct from one with an empty value. To remove ⟨key⟩ iff it has no
value, use ⟨key⟩. To remove ⟨key⟩ iff it’s value is empty, use ⟨key⟩= or ⟨key⟩=.

forest-ext 21 / 22

References

Fischer, Ulrike (2025). The tagpdf Package. v0.99w. 31st Oct. 2025. ctan: tagpdf.
International Organization for Standardization (2025). Document management applications — Electronic

document file format enhancement for accessibility —Part 2: Use of iso 32000-2 (pdf/ua-2). 5th Apr.
2025.

pdf Association (2024a). iso 32000-2:2020 (pdf 2.0) including Errata Collection 2. 24th Sept. 2024.
— (2024b). Well-Tagged pdf (wtpdf) Using Tagged pdf for Accessibility and Reuse in pdf 2.0. 28th Feb.

2024.
LATEX Project (2025). The latex-lab-tikz Package: Support for the Tagging of TikZ Pictures. v0.80d. 27th Sept.

2025. ctan: latex-lab.
Rees, Clea F. (2026). prooftrees. 0.9.2. 16th Jan. 2026. ctan: prooftrees.
Živanović, Sašo (2017). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.1.5. 14th July

2017. ctan: forest.

Change History

v0.1

General: First public release. 1

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols
+also parent (style) 14

A
align middle child (style) . . . 17

align middle children (style) . 17

also parent (style) 14

also parent+ (style) 14

alt text (autowrapped toks) . . . 3

autowrapped toks registers:

has branches 4

is branch 4

is child 4

is edge label 4

is leaf 4

is root 4

autowrapped toks:

alt text 3

B
before collating tags (keylist) . 3

before tagging nodes (keylist) . 3

before tagging tree (keylist) . . 3

boolean registers:

debug multi phantoms 14

not debug multi phantoms . 14

tagging 4

C
c foster parent (step) 14

c fosterling (step) 14

choice keys:

collate tags uses 4

tag nodes uses 4

tag tree uses 4

code keys:

custom tagging 6

declare tagging
keylist,redeclare
tagging keylist 19

not custom tagging 6

tagging keylist put 20

tagging keylist remove . . . 20

tagging keylist remove
key 20

collate tags (tagging keylist) . . 3

collate tags uses (choice key) . 4

custom tagging (code key) 6

D
debug multi phantoms (bool.

reg.) 14

declare tagging keylist,redeclare
tagging keylist (code

key) 19

E
every foster parent (step) . . . 14

every fosterling (step) 14

every parent (keylist) 13

ext.ling (lib.) 2

ext.ling-debug (lib.) 2

ext.multi (lib.) 2

ext.multi-debug (lib.) 2

ext.tagging (lib.) 2, 2

ext.tagging-debug (lib.) 2, 2

ext.utils (lib.) 2

ext.utils-debug (lib.) 2

F
foster parents (step) 14

fosterlings (step) 14

H
has branches (autowrapped toks

reg.) 4

I
is branch (autowrapped toks

reg.) 4

is child (autowrapped toks reg.) 4

is edge label (autowrapped toks

reg.) 4

is leaf (autowrapped toks reg.) . 4

is root (autowrapped toks reg.) . 4

K
keylists registers:

outer labels 18

keylists:

before collating tags 3

https://www.ctan.org/pkg/tagpdf
https://www.ctan.org/pkg/latex-lab
https://www.ctan.org/pkg/prooftrees
https://www.ctan.org/pkg/forest

forest-ext 22 / 22

before tagging nodes 3

before tagging tree 3

every parent 13

L
libraries:

ext.ling 2

ext.ling-debug 2

ext.multi 2

ext.multi-debug 2

ext.tagging 2, 2

ext.tagging-debug 2, 2

ext.utils 2

ext.utils-debug 2

M
multi (style) 12

N
not custom tagging (code key) . 6

not debug multi phantoms (bool.

reg.) 14

O
outer label (style) 18

outer labels (keylist register) . 18

outer labels at (toks register) 18

P
pretty nice empty nodes

(style) 16

S
stages:

tag tree stage 3

steps:

c foster parent 14

c fosterling 14

every foster parent 14

every fosterling 14

foster parents 14

fosterlings 14

styles:

+also parent 14

align middle child 17

align middle children . . . 17

also parent 14

also parent+ 14

multi 12

outer label 18

pretty nice empty nodes . . 16

T
tag nodes (tagging keylist) 3

tag nodes uses (choice key) 4

tag tree stage (stage) 3

tag tree uses (choice key) 4

tagging (bool. reg.) 4

tagging keylist put (code key) 20

tagging keylist remove (code

key) 20

tagging keylist remove key
(code key) 20

tagging keylists:

collate tags 3

tag nodes 3

toks registers:

outer labels at 18

	Contents
	1 Basic usage
	2 Tagging
	2.0.1 Customisation
	2.0.2 Custom plugs
	2.0.3 Complete control
	2.1 Workflow
	2.2 Example

	3 Multiple parents
	3.1 Creating multiple parents
	3.2 Connecting multiple parents

	4 Linguistics extensions
	5 Utilities
	5.1 Alignment
	5.2 Outer labels
	5.3 ‘Tagging’ keylists

	Changes
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	S
	T

