Combine probabilistic forecasts using CRPS learning algorithms proposed in Berrisch, Ziel (2021) <doi:10.48550/arXiv.2102.00968> <doi:10.1016/j.jeconom.2021.11.008>. The package implements multiple online learning algorithms like Bernstein online aggregation; see Wintenberger (2014) <doi:10.48550/arXiv.1404.1356>. Quantile regression is also implemented for comparison purposes. Model parameters can be tuned automatically with respect to the loss of the forecast combination. Methods like predict(), update(), plot() and print() are available for convenience. This package utilizes the optim C++ library for numeric optimization <https://github.com/kthohr/optim>.
Version: | 1.3.2 |
Depends: | R (≥ 4.3.0) |
Imports: | Rcpp (≥ 1.0.5), Matrix, abind, methods, lifecycle, generics, tibble, ggplot2 |
LinkingTo: | Rcpp, RcppArmadillo (≥ 0.10.7.5.0), RcppProgress, splines2 (≥ 0.4.4), rcpptimer (≥ 1.1.0) |
Suggests: | testthat (≥ 3.0.0), gamlss.dist, knitr, rmarkdown, dplyr |
Published: | 2024-03-25 |
DOI: | 10.32614/CRAN.package.profoc |
Author: | Jonathan Berrisch [aut, cre], Florian Ziel [aut] |
Maintainer: | Jonathan Berrisch <Jonathan at Berrisch.biz> |
BugReports: | https://github.com/BerriJ/profoc/issues |
License: | GPL (≥ 3) |
URL: | https://profoc.berrisch.biz, https://github.com/BerriJ/profoc |
NeedsCompilation: | yes |
Language: | en-US |
Citation: | profoc citation info |
Materials: | README NEWS |
In views: | TimeSeries |
CRAN checks: | profoc results |
Reference manual: | profoc.pdf |
Vignettes: |
Using the C++ Interface Production Introduction |
Package source: | profoc_1.3.2.tar.gz |
Windows binaries: | r-devel: profoc_1.3.2.zip, r-release: profoc_1.3.2.zip, r-oldrel: profoc_1.3.2.zip |
macOS binaries: | r-release (arm64): profoc_1.3.2.tgz, r-oldrel (arm64): profoc_1.3.2.tgz, r-release (x86_64): profoc_1.3.2.tgz, r-oldrel (x86_64): profoc_1.3.2.tgz |
Old sources: | profoc archive |
Please use the canonical form https://CRAN.R-project.org/package=profoc to link to this page.